76 research outputs found

    Organochlorinated pesticides expedite the enzymatic degradation of DNA

    Get PDF
    Extracellular DNA in the environment may play important roles in genetic diversity and biological evolution. However, the influence of environmental persistent organic contaminants such as organochlorinated pesticides (e.g., hexachlorocyclohexanes [HCHs]) on the enzymatic degradation of extracellular DNA has not been elucidated. In this study, we observed expedited enzymatic degradation of extracellular DNA in the presence of α-HCH, β-HCH and γ-HCH. The HCH-expedited DNA degradation was not due to increased deoxyribonuclease I (DNase I) activity. Our spectroscopic and computational results indicate that HCHs bound to DNA bases (most likely guanine) via Van der Waals forces and halogen bonds. This binding increased the helicity and accumulation of DNA base pairs, leading to a more compact DNA structure that exposed more sites susceptible to DNase I and thus expedited DNA degradation. This study provided insight into the genotoxicity and ecotoxicity of pesticides and improved our understanding of DNA persistence in contaminated environments

    On the relevance between fine structure and enhanced performance of skutterudite thermoelectric materials: X-ray spectroscopy studies

    Get PDF
    AbstractThe relevance between the fine structure and transport performance of thermoelectric materials can be revealed by X-ray spectroscopy including X-ray absorption and emission spectra as an effective tool. In this paper, the experimental spectra of extended X-ray absorption fine structure (EXAFS), X-ray absorption near-edge structure (XANES), and valence-band X-ray photoelectron spectroscopy (XPS) of Ba and In double-filled skutterudites (BaxInyCo4Sb12) were analyzed via the first-principles calculation and spectrum simulation. The atomic-scale fine structures indicate that the rectangle Sb4 rings become square when the total filing fraction of Ba and In increases. The transition of Sb4 rings leads to the band convergence and density of states (DOS) increase of the SbSb ppσ bonding and ppπ∗ antibonding states. The enhanced TE performance of BaxInyCo4Sb12 is essentially attributed to the band convergence, the increased DOS near the Fermi level, and the resonant phonon scattering of Ba and In fillers

    Robust optimal dispatching model and a benefit allocation strategy for rural novel virtual power plants incorporating biomass waste energy conversion and carbon cycle utilization

    Get PDF
    To optimize the utilization of rural biomass waste resources (e.g., straw and solid waste), biomass waste energy conversion (BWEC) and carbon cycle utilization (CCU) are integrated into a traditional virtual power plant, i.e., a rural BWEC-CCU-based virtual power plant. Furthermore, a fuzzy robust two-stage dispatching optimal model for the BWEC-CCU-based virtual power plant is established considering the non-determinacy from a wind power plant (WPP) and photovoltaic (PV) power. The scheduling model includes the day-ahead deterministic dispatching model and real-time uncertainty dispatching model. Among them, in the day-ahead dispatching phase, the dispatching plan is formulated with minimum operating cost and carbon emission targets. In the real-time dispatching phase, the optimal dispatching strategy is formulated aiming at minimum deviation adjustment cost by applying the Latin hypercube sampling method. The robust stochastic theory is used to describe the uncertainty. Third, in order to achieve optimal distribution of multi-agent cooperation benefits, a benefit distribution strategy based on Nash negotiation is designed considering the three-dimensional interfering factor of the marginal benefit contribution, carbon emission contribution, and deviation risk. Finally, a rural distribution network in Jiangsu province, China, is selected for case analysis, and the results show that 1) the synergistic optimal effect of BWEC and CCU is obvious, and the operation cost and deviation adjustment cost could decrease by 26.21% and 39.78%, respectively. While the capacity ratio of WPP + PV, BWEC, and CCU is 5:3:2, the dispatching scheme is optimum. 2) This scheduling model can be used to formulate the optimal scheduling scheme. Compared with the robust coefficient Γ = 0, when Γ = 1, the WPP and PV output decreased by 15.72% and 15.12%, and the output of BWEC and CCU increased by 30.7% and 188.19%, respectively. When Γ∈ (0.3, 0.9), the growth of Γ has the most direct impact on the dispatching scheme. 3) The proposed benefit equilibrium allocation strategy can formulate the most reasonable benefit allocation plan. Compared with the traditional benefit allocation strategy, when the proposed method is used, the benefit share of the WPP and PV reduces by 5.2%, and the benefit share of a small hydropower station, BWEC, and CCU increases by 1.7%, 9.7%, and 3.8%, respectively. Overall, the proposed optimal dispatching and benefit allocation strategy could improve the aggregated utilization of rural biomass waste resources and distributed energy resources while balancing the benefit appeal of different agents

    Effects of Voltage-Gated K +

    Get PDF
    Objective. To study the effects and underlying mechanisms of voltage-gated K+ channels on the proliferation of multiple myeloma cells. Methods. RPMI-8226 MM cell line was used for the experiments. Voltage-gated K+ currents and the resting potential were recorded by whole-cell patch-clamp technique. RT-PCR detected Kv channel mRNA expression. Cell viability was analyzed with MTT assay. Cell counting system was employed to monitor cell proliferation. DNA contents and cell volume were analyzed by flow cytometry. Results. Currents recorded in RPMI-8226 cells were confirmed to be voltage-gated K+ channels. A high level of Kv1.3 mRNA was detected but no Kv3.1 mRNA was detected in RPMI-8226 cells. Voltage-gated K+ channel blocker 4-aminopyridine (4-AP) (2 mM) depolarized the resting potential from −42 ± 1.7 mV to −31.8 ± 2.8 mV (P<0.01). The results of MTT assay showed that there was no significant cytotoxicity to RPMI-8226 cells when the 4-AP concentration was lower than 4 mM. 4-AP arrested cell cycle in G0/G1 phase. Cells were synchronized at the G1/S boundary by treatment of aphidicolin and released from the blockage by replacing the medium with normal culture medium or with culture medium containing 2 mM 4-AP. 4-AP produced no significant inhibitory effect on cell cycle compared with control cells (P>0.05). Conclusions. In RPMI-8226, voltage-gated K+ channels are involved in proliferation and cell cycle progression its influence on the resting potential and cell volume may be responsible for this process; the inhibitory effect of the voltage-gated K+ channel blocker on RPMI-8226 cell proliferation is a phase-specific event

    Study on atomization mechanisms and spray fragmentation characteristics of water and emulsion butachlor

    Get PDF
    Agricultural chemicals are commonly used to control pests and weeds, but cause pesticide waste problems. Oil-based emulsions are often used as pesticide formulations to improve pesticide utilization. In this study, the spray visualization experiment of the water and oil-based emulsion butachlor is carried out using an ST flat fan nozzle at 0.1–0.5 MPa pressure. The dimensionless method is used to analyze the difference in liquid sheet fragmentation morphology and disintegration process and the influence of different fragmentation methods on droplet size. It is found that the hydrophobic components in pesticide have a significant effect on the morphology and process of atomization fragmentation. When spray liquid is water, the liquid sheet breaks up into liquid ligaments due to the Rayleigh instability, then the ligaments break up into droplets. The side view of a liquid sheet is a large-amplitude wave disturbance. When the spray liquid is the emulsion butachlor, holes are generated on the liquid sheet, then the holes break up into droplets. The fragmentation method of emulsion spray is the perforation mechanism. Compared with water spray, the presence of the pesticide butachlor increases the droplet size and spray angle and improves the uniformity of droplet size distribution but reduces the breakup length. The spray angle shows a power law dependence of the Weber number with a power of 0.17 for all conditions tested here. At 0.3 MPa, DV50 increases 25%, and span decreases from 1.187 to 1.172. This study could provide reference for the addition of agricultural additives, the improvement of spray operation efficiency, and the establishment of spray fragmentation mechanism

    Exploring the risk factors of early sepsis after liver transplantation: development of a novel predictive model

    Get PDF
    BackgroundSepsis is a severe and common complication of liver transplantation (LT) with a high risk of mortality. However, effective tools for evaluating its risk factors are lacking. Therefore, this study identified the risk factors of early post-liver transplantation sepsis and established a nomogram.MethodsWe analyzed the risk factors of post-liver transplantation sepsis in 195 patients. Patients with infection and a systemic inflammatory response syndrome (SIRS) score ≥ 2 were diagnosed with sepsis. The predictive indicators were screened with the least absolute shrinkage and selection operator (LASSO) and collinearity analyses to develop a nomogram. The prediction performance of the new nomogram model, Sequential Organ Failure Assessment (SOFA) score, and Modified Early Warning Score (MEWS) was compared through assessment of the area under the curve (AUC), decision curve analysis (DCA), net reclassification index (NRI), and integrated discrimination improvement (IDI).ResultsThe nomogram was based on postoperative heart rate, creatinine concentration, PaO2/FiO2 ratio &lt; 400 mmHg, blood glucose concentration, and international normalized ratio. The AUC of the nomogram, the SOFA score, and MEWS were 0.782 (95% confidence interval CI: 0.716–0.847), 0.649 (95% CI: 0.571–0.727), and 0.541 (95% CI: 0.469–0.614), respectively. The DCA curves showed that the net benefit rate of the nomogram was higher than that of the SOFA score and MEWS. The NRI and IDI tests revealed better predictive performance for the nomogram than SOFA score and MEWS.ConclusionHeart rate, creatinine concentration, PaO2/FiO2, glucose concentration, and international normalized ratio should be monitored postoperatively for patients at risk of post-liver transplantation sepsis. The nomogram based on the aforementioned risk factors had a better predictive performance than SOFA score and MEWS

    Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials

    Get PDF
    How to suppress the performance deterioration of thermoelectric materials in the intrinsic excitation region remains a key challenge. The magnetic transition of permanent magnet nanoparticles from ferromagnetism to paramagnetism provides an effective approach to finding the solution to this challenge. Here, we have designed and prepared magnetic nanocomposite thermoelectric materials consisting of BaFe12O19 nanoparticles and Ba0.3In0.3Co4Sb12 matrix. It was found that the electrical transport behaviours of the nanocomposites are controlled by the magnetic transition of BaFe12O19 nanoparticles from ferromagnetism to paramagnetism. BaFe12O19 nanoparticles trap electrons below the Curie temperature (TC) and release the trapped electrons above the TC, playing an ‘electron repository’ role in maintaining high figure of merit ZT. BaFe12O19 nanoparticles produce two types of magnetoelectric effect—electron spiral motion and magnon-drag thermopower—as well as enhancing phonon scattering. Our work demonstrates that the performance deterioration of thermoelectric materials in the intrinsic excitation region can be suppressed through the magnetic transition of permanent magnet nanoparticles

    Association analyses of East Asian individuals and trans-ancestry analyses with European individuals reveal new loci associated with cholesterol and triglyceride levels

    Get PDF
    Large-scale meta-analyses of genome-wide association studies (GWAS) have identified >175 loci associated with fasting cholesterol levels, including total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG). With differences in linkage disequilibrium (LD) structure and allele frequencies between ancestry groups, studies in additional large samples may detect new associations. We conducted staged GWAS meta-analyses in up to 69,414 East Asian individuals from 24 studies with participants from Japan, the Philippines, Korea, China, Singapore, and Taiwan. These meta-analyses identified (P < 5 × 10-8) three novel loci associated with HDL-C near CD163-APOBEC1 (P = 7.4 × 10-9), NCOA2 (P = 1.6 × 10-8), and NID2-PTGDR (P = 4.2 × 10-8), and one novel locus associated with TG near WDR11-FGFR2 (P = 2.7 × 10-10). Conditional analyses identified a second signal near CD163-APOBEC1. We then combined results from the East Asian meta-analysis with association results from up to 187,365 European individuals from the Global Lipids Genetics Consortium in a trans-ancestry meta-analysis. This analysis identified (log10Bayes Factor ≥6.1) eight additional novel lipid loci. Among the twelve total loci identified, the index variants at eight loci have demonstrated at least nominal significance with other metabolic traits in prior studies, and two loci exhibited coincident eQTLs (P < 1 × 10-5) in subcutaneous adipose tissue for BPTF and PDGFC. Taken together, these analyses identified multiple novel lipid loci, providing new potential therapeutic targets

    Genomics of perivascular space burden unravels early mechanisms of cerebral small vessel disease

    Get PDF
    Perivascular space (PVS) burden is an emerging, poorly understood, magnetic resonance imaging marker of cerebral small vessel disease, a leading cause of stroke and dementia. Genome-wide association studies in up to 40,095 participants (18 population-based cohorts, 66.3 ± 8.6 yr, 96.9% European ancestry) revealed 24 genome-wide significant PVS risk loci, mainly in the white matter. These were associated with white matter PVS already in young adults (N = 1,748; 22.1 ± 2.3 yr) and were enriched in early-onset leukodystrophy genes and genes expressed in fetal brain endothelial cells, suggesting early-life mechanisms. In total, 53% of white matter PVS risk loci showed nominally significant associations (27% after multiple-testing correction) in a Japanese population-based cohort (N = 2,862; 68.3 ± 5.3 yr). Mendelian randomization supported causal associations of high blood pressure with basal ganglia and hippocampal PVS, and of basal ganglia PVS and hippocampal PVS with stroke, accounting for blood pressure. Our findings provide insight into the biology of PVS and cerebral small vessel disease, pointing to pathways involving extracellular matrix, membrane transport and developmental processes, and the potential for genetically informed prioritization of drug targets.Etude de cohorte sur la santé des étudiantsStopping cognitive decline and dementia by fighting covert cerebral small vessel diseaseStudy on Environmental and GenomeWide predictors of early structural brain Alterations in Young student

    A Two-Stream Multiscale Deep Learning Architecture for Pan-Sharpening

    No full text
    International audiencePan-sharpening, which fuses the high-resolution panchromatic (PAN) image and the low-resolution multispectral image (MSI), is a hot topic in remote sensing. Recently, deep learning technology has been successfully applied in pan-sharpening. However, the existing methods ignore that the MSI and PAN image are at different resolutions and use the same networks to extract features of the two images. To address this problem, we propose a two-stream deep learning architecture, called coupled multiscale convolutional neural network, for pan-sharpening. The proposed network has three components, feature extraction subnetworks, fusion layer, and super-resolution subnetwork. In the feature extraction subnetworks, two subnetworks are used to extract the features of the MSI and PAN image separately. Different sizes of convolutional kernels are used in the first layers due to the different spatial resolutions. Thus, the source images are mapped to the similar scale. Then a multiscale asymmetric convolution factorization is used to extract features at different scales. In the fusion layer, the two feature extraction subnetworks are coupled. Features at the same scale are first summed, and then the features of all scales are concatenated as one feature map. At last, a super-resolution subnetwork is used to generate the high-resolution MSI. Experimental results on both synthetic and real data sets demonstrate that the proposed method outperforms the other state-of-the-art pan-sharpening methods
    • …
    corecore